organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Bis(μ-pyrrolidine-*N*:*N*)bis(dibromoboron), [(Br)₂B(pyrrolidine)₂B(Br)₂]

Hijazi Abu Ali,^a Israel Goldberg^{b*} and Morris Srebnik^a

^aDepartment of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University in Jerusalem, Jerusalem, Israel, and ^bSchool of Chemistry, Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel Correspondence e-mail: goldberg@chemsg7.tau.ac.il

Received 5 March 2001 Accepted 28 March 2001

The B atoms in the title compound, $C_8H_{16}B_2Br_4N_2$, bridge between the two monomeric moieties, forming a (BN)₂ fourmembered ring with partial bond orders of the B-N bonds.

Comment

The $B_2(NR_2)_2$ compounds are important intermediates in the synthesis of $B_2(OR)_4$ compounds, which are very useful in the preparation of boronic acids from alkynes (Ishiyama, Matsuda et al., 1996), 1,3-butadienes (Ishiyama, Yamamoto & Miyaura, 1996), α,β -enones (Lawson et al., 1997), methylenecyclopropanes (Ishiyama et al., 1999) and aromatic compounds (Ishiyama et al., 1995). The preparation of $B_2(NR_2)_2$ involves Wurtz coupling of the dialkylhaloboranes (Brotherton et al., 1960; Nöth & Meister, 1961). Moreover, the structural aspects of diborane chemistry are not well explored and conformational problems are not yet properly understood (Moezzi et al., 1992). It has been shown that the bromides $(R_2N)_2BBr$ provide better yields than the chlorides (Brotherton et al., 1960). In addition, the size of the R groups on the nitrogen influences the yields of $B_2(NR_2)_2$. In an effort to synthesize $B_2(NR_2)_2$ compounds other than the methyl derivative and to explore their structural chemistry, we studied the dehalogenation of bis(pyrrolidino)bromoborane. During the course of this investigation, we isolated an unexpected by-product, *i.e.* the title compound, $[(Br)_2B(pyrrolidine)_2B(Br)_2]$, (I), in low yield. Subsequently, the same product was obtained in 90% yield, as described below.

The molecular structure of (I) is illustrated in Fig. 1. The molecule has three possible directions for a C_2 axis, and it reveals an approximate C_2 symmetry about an axis passing perpendicular to the plane, and through the centre, of the four-membered ring. Its structural features, with relatively

long B–N bonds [mean 1.603 (7) Å], are similar to those observed in closely related aminoboron dichloride and difluoride dimers (Hazell, 1966; Edwards & Stadler, 1970; Jones, 1984; Clegg *et al.*, 1998; Jansen & Jäschke, 1999), as well as in other aminoboron dimers (Metzler & Nöth, 1995). This confirms that the observed elongation of the B–N bond is a genuine feature of the system.

The four-membered (BN)₂ ring in this structure has a distorted tetrahedral geometry. The N5-B7-N6 angle of 92.4 (2) $^{\circ}$ is significantly less than the ideal tetrahedral value. This results in a corresponding widening of the angles N5-B7-Br2 [113.5 (2)°], N6-B7-Br2 [113.7 (2)°], N5-B7-Br1 $[113.9(2)^{\circ}]$ and N6-B7-Br1 $[116.0(2)^{\circ}]$, while the Br2-B7-Br1 angle of 107.0 (2)° is relatively close to tetrahedral. The coordination geometry around the N atoms is also distorted from tetrahedral. Although the B7-N5-B8 angle of 86.8 $(2)^{\circ}$ is significantly less than the ideal tetrahedral value, widening of the C9-N5-C12 angle $[100.3 (2)^{\circ}]$ is not observed. On the other hand, the angles C9-N5-B7 $[117.5 (2)^{\circ}],$ C12-N5-B7 $[118.0 (3)^{\circ}],$ C9-N5-B8 $[119.8 (3)^{\circ}]$ and C12-N5-B8 $[115.7 (2)^{\circ}]$ are all expanded. Due to the presence of pseudo- C_2 symmetry, both B8 and N6 are similar to B7 and N5 in terms of geometry. The relatively long B-N bonds may be attributed to the coordination number of four around the B and N atoms, which, due to the bridging manner of the pyrrolidine groups, does not permit B-N π -bonding interactions, giving a bond order of about one. This is in contrast with an average B-N bond length of 1.48 Å observed in compounds having a B–N π -interaction and a bond order of about two (Nöth et al., 1999). In addition, the electronegativity of the heterocyclic pyrrolidine groups also tends to inhibit π -bonding through their N atoms.

The four-membered heterocyclic ring has a bent nature. The dihedral angles between its N–B–N planes and between its B–N–B planes are 16.2 (3) and 15.4 (3)°, respectively. The pyrrolidine groups are puckered and adopt an envelope conformation with the N atoms at the flaps. The corresponding puckering parameters (Cremer & Pople, 1975) for the two rings are $q_2 = 0.438$ (4) and 0.435 (3) Å, and $\varphi_2 = -178.9$ (5) and -174.4 (5)°. The carbon plane of one ring (C13–C16) points up, while the plane of the other ring (C9–C12) points down. The deviations of the N atoms from the respective

The molecular structure of (I), with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

carbon planes are 0.665 (3) Å for N5 and 0.655 (3) Å for N6. The H atoms of the pyrrolidine rings are eclipsed. The substituents of the four-membered ring are slightly staggered, with torsion angles of 12.7 (3)° for C16-N6-B8-Br4 and 16.0 (3)° for C13-N6-B8-Br3, to decrease eclipsing interactions between H and Br atoms.

Experimental

A solution of boron tribromide (9.92 g, 0.04 mol) in pentane (30 ml) was added over a period of 20 min to a vigorously stirred solution of tris(pyrrolidino)borane (4.38 g, 0.20 mol) in pentane (100 ml) at 273 K. After an additional 3 h, the solution was allowed to warm to room temperature. The pentane was then removed by vacuum and the residue was distilled at 1 mm Hg (1 mm Hg = 133.322 Pa) to give the product as a clear liquid which, upon cooling below 273 K, gave colourless crystals of (I) in 90% yield (b.p. 403 K at 0.5 mm Hg). Analysis calculated for C₈H₁₆B₄Br₄N₂: C 19.96, H 3.35, N 5.82, Br 66.38%; found: C 20.00, H 3.67, N 5.79, Br 66.26%. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution using a Varian Unity (300 or 75 MHz), with Me₄Si as an internal standard. ¹¹B NMR spectra were recorded using a Bruker MSL-400 (128 MHz), with BF₃·OEt₂ as an external standard. Spectroscopic analysis: ¹H NMR (CDCl₃, δ , p.p.m.): 1.90 (t, 8H, CH₂, ${}^{3}J_{H-H} = 6.9$ Hz), 3.45 (t, 8H, CH₂N, ${}^{3}J_{H-H} =$ 6.8 Hz); ¹³C{¹H} NMR (CDCl₃, δ, p.p.m.): 26.37 (CH₂), 51.80 (CH₂N); ¹¹B NMR (CDCl₃, *δ*, p.p.m.): 23.23.

Crystal data

$C_8H_{16}B_2Br_4N_2$	$D_x = 2.316 \text{ Mg m}^{-3}$
$M_r = 481.49$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3271
$a = 12.8750 (2) \text{\AA}$	reflections
b = 6.99600 (10) Å	$\theta = 2.6-27.9^{\circ}$
c = 16.4480(3) Å	$\mu = 11.63 \text{ mm}^{-1}$
$\beta = 111.2230 \ (8)^{\circ}$	T = 110 (2) K
V = 1381.05 (4) Å ³	Prism, colourless
Z = 4	0.20 × 0.15 × 0.10 mm
D III	

Data collection

Nonius KappaCCD area-detector diffractometer	3271 independent reflections 2850 reflections with $I > 2\sigma(I)$
$1^{\circ} \varphi$ scans	$R_{\rm int} = 0.041$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.9^{\circ}$
(SORTAV; Blessing, 1995)	$h = 0 \rightarrow 16$
$T_{\min} = 0.155, T_{\max} = 0.341$	$k = 0 \rightarrow 9$
5628 measured reflections	$l = -21 \rightarrow 20$

Table 1

Selected geometric parameters (Å, °).

2.014 (4)	N5-B7	1.597 (4)
1.990 (4)	N5-B8	1.610 (4)
1.988 (4)	N6-B7	1.601 (4)
2.006 (4)	N6-B8	1.604 (4)
86.8 (2)	N5-B7-N6	92.4 (2)
86.8 (2)	N6-B8-N5	91.8 (2)
11.2 (2)	B8-N6-B7-N5	-11.2 (2)
-106.0(2)	B8-N6-B7-Br2	105.8 (2)
131.1 (2)	B8-N6-B7-Br1	-129.4 (2)
	2.014 (4) 1.990 (4) 1.988 (4) 2.006 (4) 86.8 (2) 86.8 (2) 11.2 (2) -106.0 (2) 131.1 (2)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.029$
$wR(F^2) = 0.069$
S = 1.01
3271 reflections
145 parameters
H-atom parameters constrained
-

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0308P)^2 \\ &+ 3.5877P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{max} = 0.019 \\ &\Delta\rho_{max} = 0.94 \ e \ Å^{-3} \\ &\Delta\rho_{min} = -0.81 \ e \ Å^{-3} \\ &Extinction \ correction: \ SHELXL97 \\ &(Sheldrick, 1997) \\ &Extinction \ coefficient: \ 0.00076 \ (17) \end{split}$$

H atoms were refined as riding, with C-H = 0.99 Å and U_{iso} = 1.2 U_{eq} of their parent atoms.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO* (Otwinowski, 1985); data reduction: *DENZO*; program(s) used to solve structure: *DIRDIF*96 (Beurskens *et al.*, 1996); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL*97.

The authors thank the Israeli Science Foundation, MECC and the Horowitz Fund for support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1117). Services for accessing these data are described at the back of the journal.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1996). *The DIRDIF96 Program System.* Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Blessing, B. (1995). Acta Cryst. A51, 33-38.
- Brotherton, R. J., McCloskey, A. L., Petterson, L. L. & Steinberg, H. (1960). J. Am. Chem. Soc. 82, 6242–6245.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Clegg, W., Elsegood, M. R. J., Lawlor, F. J., Norman, N. C., Pickett, N. L., Robins, E. G., Scott, A. J., Nguyen, P., Taylor, N. J. & Marder, T. B. (1998). *Inorg. Chem.* **37**, 5289–5293.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Edwards, I. A. S. & Stadler, H. P. (1970). Acta Cryst. B26, 1905-1908.
- Hazell, A. C. (1966). J. Chem. Soc. A, pp. 1392-1394.
- Ishiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A. & Miyaura, N. (1996). Organometallics, 15, 713–720.
- Ishiyama, T., Momota, S. & Miyaura, N. (1999). Synlett, 11, 1790-1792.
- Ishiyama, T., Murata, M. & Miyaura, N. (1995). J. Org. Chem. 60, 7508-7510.
- Ishiyama, T., Yamamoto, M. & Miyaura, N. (1996). J. Chem. Soc. Chem. Commun. pp. 2073–2074.
- Jansen, M. & Jäschke, T. (1999). Z. Anorg. Allg. Chem. 625, 1957-1959.
- Jones, P. G. (1984). Acta Cryst. C40, 1465-1466.
- Lawson, Y. G., Lesley, M. J. G., Marder, T. B., Norman, N. C. & Rice, C. R. (1997). J. Chem. Soc. Chem. Commun. pp. 2051–2052.
- Metzler, N. & Nöth, H. (1995). Chem. Ber. 128, 711-717.
- Moezzi, A., Olmstead, M. M. & Power, P. P. (1992). J. Chem. Soc. Dalton Trans. pp. 2429-2434.
- Nonius (1999). COLLECT. Nonius, Delft, The Netherlands.
- Nöth, H. & Meister, W. (1961). Chem. Ber. 94, 509-514.

Nöth, H., Knizek, J. & Ponikwar, W. (1999). Eur. J. Inorg. Chem. pp. 1931– 1937.

- Otwinowski, Z. (1985). *DENZO*. University of Texas Southwestern Medical Center at Dallas, Texas, USA.
- Sheldrick. G. M. (1997). SHELXL97. University of Göttingen, Germany.